
Arrays

Common
problem:
needing many
objects in a
program

Imagine you are writing a
program to simulate an
ecosystem.

� You want several “Fox” objects
(red circles),

� A lot of ”Rabbit” objects
(white circles) that will be
eaten by foxes,

� And a lot of “Grass” objects
(green squares) that will be
eaten by rabbits.

What does this look like in code?

Do we need
separate
variables for
each object?!

There must be a better way…

When you
need many
objects of a
single type,
use an array

[] makes the datatype ‘plural’,
and defines an array of that type

Arrays are lists
of a single type

Syntax for
arrays

int[] variableName = {5, 6, 11};

Start with a datatype. Any kind of datatype
may be used to make an array.

Syntax for
arrays

int[] variableName = {5, 6, 11};

Square brackets indicate that we want to
make an array of that datatype.

The brackets look like a box or container.
Think: “a box full of ints.”

Syntax for
arrays

int[] variableName = {5, 6, 11};

Any variable name may be used. It is best to
use a descriptive plural noun.

Syntax for
arrays

int[] variableName = {5, 6, 11};

Initialize the array with a comma-separated
list enclosed in curly brackets.

Arrays may
not have a
mixture of
different
datatypes

int[] badArray = {5, 7.3, “hi”};

Not allowed!

Arrays have
“slots” that can
be indexed

The length of an array is
the number of slots it
contains.

An element of an array
is a piece of data inside
the array in a particular
slot.

An index is a number
describing the position
of the element (starting
from zero).

If the length is 8, the last
index must be 7 since
we start counting from
zero.

Arrays have
“slots” that can
be indexed

Example:
someWords is an array of
Stringwith length 8.

“aargh” is an element of
someWords.

The index of “aargh” is
3, although it is the fourth
String in the array.

”aargh” is bound to the
array variable
someWords[3].

Changing an
element in an
array Change what is in an array by

setting the element’s array variable
to a new value

Changing an
element in an
array

The element
at index 3 is
now “zebra”

Watch out for
indexing out of
bounds

No element
with index 8
exists!

Arrays have a
fixed size.

They do not
expand or
shrink after
creation.

Not possible to
expand an array
or add elements
beyond the end.

Useful trick:
you can index
with a variable

If we declare a variable i = 5,
someWords[i] is the same as typing
someWords[5]

Useful trick:
you can index
with a variable

What does the following code do?

String[] animalNoises = {”Moo”, “Quack”,
“Meow”, “Oink”, “Baa”, “Squeak”, “Ribbit”};

int i = 2;

while (i < 7)

{

System.out.println(animalNoises[i]);

i++;

}

Another useful
feature: create
an empty array
of a given size

new Datatype[100]
can create an empty array
with 100 slots to hold a
particular datatype.

In general, the default
value in each slot is null,
which we will interpret as
“no available object yet”.

“Empty” arrays
of primitive
datatypes
actually have a
default value

The default value of numeric types is zero.
The default for booleans is false.

Working with
empty arrays

What does the following code do?

int[] nums = new int[50];

int i = 0;

while (i < 50)

{

nums[i] = i * 2;

i++;

}

Working with
empty arrays

What does the following code do?

int[] nums = new int[50];

int i = 0;

while (i < 50)

{

nums[i] = i * 2;

i++;

}

Loops are very useful for
filling arrays with values
and for working with
arrays in general.

We will learn more useful
loop types in the next
lessons.

