

Common
problem:

needing many
objectsina
program

Imagine you are writing a
program to simulate an
ecosystem.

* You want several "Fox” objects
(red circles),

- Alot of “Rabbit” objects
(white circles) that will be
eaten by foxes,

- And a lot of "Grass” objects
(green squares) that will be
eaten by rabbits.

What does this look like in code?

class Ecosystem

{
int worldWidth;

int worldHeight;

Fox fox0;
Fox fox1;

Do we need
Fox fox2;
Sepa rate Fox fox3;

Fox fox4;

variables for
each object?!

Rabbit rabo;
Rabbit rab1;
Rabbit rab2;
Rabbit rab3;
Rabbit rab4;
Rabbit rab5: There must be a better way...

Rabbit rabé6;

When you
need many

objects of a
single type,
use an array

class Ecosystem

{

int worldWidth;
int worldHeight;

Fox[] foxes:

Rabbit[] rabbits: [1 makes the datatype ‘plural’,
Grass[] grass; and defines an array of that type

Ecosystem(Fox[] foxes, Rabbit[] rabbits, Grass[] grass)

{
this.worldWidth = 20;

this.worldHeight = 20;

this.foxes = foxes;
this.rabbits = rabbits;
this.grass = grass;

Arrays are lists

of a single type

class ArrayExamples

{

int[] myNumbers

double[] myOtherNumbers =

{11 2! 2) 8! _7};

{3.14, 0.999, 1.0};

boolean[] quizAnswers = {true, true, false, true, false};

String[] someWords

"abacus”,

Fraction[] fractions =

"abandon",

= {"a", "aah","aardvark",

"abase"};

Ilaarghll, IlablI'

{new Fraction(1, 2), new Fraction(3, 5)};

int[] variableName = {5, 6, 11};

\

Syntax for Start with a datatype. Any kind of datatype
may be used to make an array.

arrays

int[] variableName = {5, 6, 11};

f

Square brackets indicate that we want to
make an array of that datatype.

Syntax for

arrays

The brackets look like a box or container.
Think: “a box full of ints.”

int[] variableName = {5, 6, 11};

e

Syntax for Any variable name may be used. It is best to
use a descriptive plural noun.

arrays

int[] variableName = {5, 6, 11};

/

Syntax for Initialize the array with a comma-separated
list enclosed in curly brackets.

arrays

Arrays may
not have a

mixture of
different
datatypes

int[] badArray

Not allowed!

{5,

7.

3,

uhi"} °
4

Arrays have

“slots” that can
be indexed

The length of an array is
the number of slots it
contains.

An element of an array
is a piece of data inside
tlhe array in a particular
slot.

An index is a number
describing the position
of the element (starting
from zero).

If the length is 8, the last
index must be 7 since
we start counting from
zero.

intlength
[0]
[
(2]
[3]
[4]
(5]
(6]
(71

Show static fields

someWords : String[]

"aardvark"

IIaarghll

Ilabll

"abacus"

"abandon"

"abase"

Compile someWords : String[]

1class
Example: s ngt
[0]
someWords is an array of — |
String Wlth Iength 8 —> [2] "aardvark"

[3] "aargh"

Compile

(4] "ab”

[5] "abacus"

Arrays have

“aargh” is an element of
someWords.

Teamwork [6] "abandon"

Share... [71 "abase"

“slots” that can '
Testing

be |ndexed The index of “aargh” is e
3, although it is the fourth someWords[0]
String([]

String in the array. @ "a" (String)
someWords[3]
& "aargh" (String)
someWords[7]
"aargh” is bound to the @ "abase" (String)

array variable
someWords|[3].

— aaiyili \uity) AN
someYVords: someWords|[O]
String[] nn H
a "g" (String)

someWords[3]

& "aargh" (String)

someWords[7/]

@ "gbase" (String) M

T someWords[3] = "zebra"|

Changing an

elementin an

array Change whatisin an array by

setting the element’s array variable
to a new value

Changing an

elementin an
array

Compile

[0]

New Class... [l
—> [2]
[31
[4]
[5]
Teamwork [6]

Compile

Share... [71

someWords : String[]

allf intlength

"aardvark"

"zebra"

"ab"

"abacus"

"abandon"

"abase"

Testing
Show static fields

Run Tests

someWords:
String[]

= a \vuiiyj

someWords[3]
@ "agargh" (String)
someWords[7]
a "agbase" (String)

someWords[3] = "zebra"
a "zebra" (String)

The element
atindex3is
now “zebra”

Source Cor

someWords : String[]

int length

[0]

2

[2]

(3]

[4]

2
Watch out for @
_ _ : . No element
indexing out o with index 8
bounds . = exists!

@ "abase" (String)

someWords[3] = "zebra"

a "zebra" (String)

someWords[8]

Exception: java.lang.ArraylndexOutOfBoundsException
< >

Arrays have a
fixed size.

They do not
expand or
shrink after

creation.

someWords : String[]

intlength
[0]
[
[2]
[31
(4]
[5]
[6]
[7]

Show static fields

someWords[3] = "zebra"
a "zebra" (String)

someWords[8]
Exception: java.lang.ArraylndexOutOf

someWords[8] = "nowhere to put this";

<

Exception: java.lang.ArraylndexOutOfBoundsException v

sException

>

Not possible to

expand an array
or add elements
beyond the end.

P N L L L e e I e

a "gargh" (String)
Strin
o someWords[7/]

@ "gbase" (String)
someWords|[3] = "zebra"

Useful trick: @ "zebra" (String)
inti=5;

you can index

| someWords|[i]

with a variable ‘

someWords : String[]

If we declare a variable i = 5,
someWords[i] isthesame astyping
someWords|[5]

What does the following code do?

String[] animalNoises = {”"Moo”, *“Quack”,
“Meow”, *“Oink”, *“Baa”, *"“Squeak”, “Ribbit”};
Useful trick: int i = 2;
you can index while (i < 7)
with a variable {

System.out.println(animalNoises[1]);

i++;

rabbit1 : Rabbit[]

Another useful
feature: create
an empty array
of a given size

Rabbit[] rabbits = new Rabbit[100];

new Datatype[100]
can create an empty array
with 100 slots to hold a
particular datatype.

In general, the default
value in each slotisnull,
which we will interpret as
"no available object yet”.

“Empty"” arrays
of primitive

datatypes
actually have a
default value

numbers : int[] moreNumbers : double[] someBools : boolean(]

e — |
1

<

>

int[] numbers = new int[25];
double[] moreNumbers = new double[50];
boolean[] someBools = new boolean[75];

The default value of numeric types is zero.
The default for booleans is false.

What does the following code do?

int[] nums = new int[50];
int 1 = 0;
Working with while (i < 50)
empty arrays {
nums[1i] = 1 * 2;
i++;

What does the following code do?

int[] nums = new 1int[50];
int 1 = 0;

: : ’ Loops are very useful for
Working with while (1 < 50) filling arrays with values
empty arrays { | | and for working with

nums[i] = 1 % 2 arrays in general.
i++;

We will learn more useful
loop types in the next
lessons.

