
Arrays and Memory

The limitations
of arrays

Arrays are useful, but they do have limitations.

Two important limitations:

� single datatype, not mixed datatypes.

� fixed size, cannot expand or shrink after creation.

These limitations (and the fact that array indexing starts from zero)
make sense if we understand what is going on behind the scenes in
computer memory when arrays are created.

Computer
memory: bits
and bytes

Bit – Short for “binary digit,” i.e. 1 or 0. The smallest meaningful unit
of information.

Bits of information are stored in memory cells inside of your computer
in a memory array.
A 1 stands for high electric potential and a 0 stands for low electric
potential in a capacitor.

Computer
memory: bits
and bytes

Byte – A grouping of 8 contiguous bits. This is the smallest grouping
of memory that the computer assigns an address.

A byte can have 28 = 256 different values… enough to encode small
pieces of information like shades of red, green, or blue for a color
value or a basic character like ‘A’ or ‘?’.

Datatypes
occupy a fixed
number of
bytes

Each primitive datatype has a different width in bytes.

char — 2 bytes

int — 4 bytes

float — 4 bytes

double — 8 bytes

Arrays are
references to
blocks of
reserved
memory

When you declare an array, Java asks your operating system to find
an unused block of bytes large enough to store your data.

The OS gives you back a reference to the memory address where
the block of bytes are located. In BlueJ, these references are
represented as arrows that “point” to the values in memory.

int[] myNumbers = new int[5];

Arrays are
references to
blocks of
reserved
memory

In fact, if you try to print myNumbers, you get some strange stuff
that looks nothing like an array:

System.out.println(myNumbers);

Output to console:

I@5d548e7a

This is the memory reference!

int[] myNumbers = new int[5];

Arrays are
references to
blocks of
reserved
memory

int[] myNumbers = new int[5];

myNumbers[0] stored at (I@5d548e7a + 0 * 4 bytes)

[0]
[1]
[2]
[3]
[4]

Arrays are
references to
blocks of
reserved
memory

int[] myNumbers = new int[5];

myNumbers[1] stored at (I@5d548e7a + 1 * 4 bytes)

[0]
[1]
[2]
[3]
[4]

Arrays are
references to
blocks of
reserved
memory

int[] myNumbers = new int[5];

myNumbers[2] stored at (I@5d548e7a + 2 * 4 bytes)

[0]
[1]
[2]
[3]
[4]

etc.

Arrays are
references to
blocks of
reserved
memory

int[] myNumbers = new int[5];

myNumbers[i] stored at (I@5d548e7a + i * 4 bytes)

[0]
[1]
[2]
[3]
[4]

The fact that arrays hold only one kind of datatype means that the
computer can jump straight to the next element of the array using
the index.

Arrays are
references to
blocks of
reserved
memory

int[] myNumbers = new int[5];

myNumbers[i] stored at (I@5d548e7a + i * 4 bytes)

[0]
[1]
[2]
[3]
[4]

Arrays cannot be expanded after they are created. That would risk
overwriting other data nearby!

other data

other data

Memory
references are
addresses

The value I@5d548e7a is itself an int that is printed as a
hexadecimal (base 16) number which is an address:

5d548e7a = 1,565,822,586 bytes deep into RAM

When arrays are passed into a method, only this address is copied
over.

The entire array is not copied over each time a method is called—
that would be very time consuming for large arrays.

Computer
RAM: Random
Access
Memory

Even though the address I@5d548e7a represents a location over
1 billion bytes deep into RAM, the data stored there can be retrieved
nearly instantly.

“Random Access” refers to the ability to jump almost instantly to a
value stored anywhere in memory.

The opposite of random access is serial access, like using a cassette
tape or vinyl record where it takes time to skip ahead to the part you
want to access.

Computer RAM:
Random Access
Memory

Modern RAM is measured in Gigabytes, which is a lot of addressable space in memory.

1 kilobyte = 1,000 bytes

1 megabyte = 1,000 kilobytes (1 million bytes)

1 gigabyte = 1,000 megabytes (1 billion bytes)

1 terabyte = 1,000 gigabytes (1 trillion bytes)

RAM is “short
term memory”

The hard drive
is “long term
memory”

When your computer turns off or
loses power, your RAM is reset.

RAM is only useful for doing
computations and helping active
programs complete their tasks.

Your photos, games, music, and
documents are all stored in long
term memory on the hard disk
drive (HDD). The HDD is a serial
access device that can store
information with much greater
density.

A hard disk drive

